Part 1 Science, Technology, and Innovation Starting on the Regional Level

Science, To	echnology, and Innovation Starting on the Regional Level	2
Chapter 1	Regional Science, Technology, and Innovation Policies	4
Section 1	Changes in Regional Science, Technology, and Innovation Policies Based on Science,	
	Technology, and Innovation Basic Plans	4
Section 2	Various Regional Science, Technology, and Innovation-Related Policies Within the	
	Government	5
Chapter 2	Regional Large-Scale Science, Technology, and Innovation Bases	8
Section 1	Open Innovation KAWASAKI	8
Section 2	KOBE Biomedical Innovation Cluster	11
Chapter 3	Various Science, Technology, and Innovation Efforts That Take Advantage of	
	Regional Characteristics and Strengths of Universities	15
Section 1	The Center of Well-being Regional Society Innovation, etc. of Aomori Prefecture,	
	Hirosaki City, and Hirosaki University	15
Section 2	Iwamizawa City/Hokkaido University Industry-Academia Regional Co-Creation	
	Project	18
Section 3	Initiative of the Tsuruoka Science Park in Yamagata Prefecture	19
Section 4	Collaboration between Universities and Regions to Strengthen the Semiconductor	
	Industry in Kumamoto Prefecture, etc.	21
Section 5	Formation of a Research Complex in Tohoku University	23
Section 6	Various Initiatives for Overseas Expansion	24
	(1) Establishment of the Global Aqua Innovation Center by Shinshu University, etc.	24
	(2) Development of Autonomous Driving Technology by a Startup Originating	
	from Nagoya University	27
Section 7	Other Various Efforts	28
Chapter 4	Science, Technology, and Innovation by Colleges of Technology (KOSEN) Based	
	in Regions Across Japan	30
Section 1	What are Colleges of Technology (KOSEN)?	30
Section 2	Collaborative Initiatives with Local Communities Supported by the Inter-College	
	Network	31
Section 3	Innovations from Colleges of Technology (KOSEN)	32
Chapter 5	Conclusion	37
Supporting	Materials	90
Supporting.	1V1atCl 1a15	9

Part 2 Measures Implemented to Promote Science, Technology, and Innovation Creation

Chapter 1	Development of Science, Technology, and Innovation Policies	40
Section 1	Science, Technology, and Innovation Basic Plan	40
Section 2	Council for Science, Technology and Innovation (CSTI)	43
1	Major Initiatives of CSTI in FY2022	44
2	Changes in the Number of Papers and Number of Adjusted Top 10% Papers Strategically	
	Prioritizing the Science and Technology Budget	44
3	Evaluation of Nationally Important Research and Development	47
4	Major Agenda Items of Expert Panels, etc.	48
Section 3	Integrated Innovation Strategy	49
Section 4	Science, Technology, and Innovation Administration System and Fund Cycle	
	Invigoration	50
1	Science, Technology, and Innovation Administration System	50
2	Fund Cycle Invigoration to Create Knowledge and Value	54
Chapter 2	Science, Technology, and Innovation Policy Toward Realization of Society 5.0	57
Section 1	Transformation into a sustainable and resilient society which ensures the safety and	
	security of the people	57
1	Creating New Value through the Fusion of Cyberspace and Physical Space	57
2	Promoting Social Change and Discontinuous Innovation to Overcome Global Issues	63
3	Building a Resilient, Safe, and Secure Society	90
4	Formation of an innovation ecosystem that will serve as the foundation for creating new industries for	r
	value co-creation	110
5	Urban and regional development that will serve as infrastructure to pass on to the next generation	
	(development of smart cities)	119
6	Promoting R&D and social implementation to resolve various social issues and utilizing	
	Convergence Knowledge (So-Go-Chi)	120
Section 2	Expanding the frontier of knowledge and strengthening research capabilities	
	as a source of value creation	158
1	Reconstruction of the environment that generates diverse and outstanding research	158
2	Construction of a new research system (promotion of open science and data-driven research, etc.)	181
3	Promoting university reform and enhancing functions for strategic management	191
Section 3	Education and Human Resources Fostering to Realize the Well-being of Individuals	
	and the Challenges They Face	197
Supporting	Materials	211

Figures and Tables

D	_	n	+	1
Г	a	Ι.	ι	J

■ Figure 1-2-1/ KING SKYFRONT, Tonomachi International Strategic Zone	8
■(Figure 1-2-2)/ Image of In-Body Hospitals	9
■ Figure 1-2-3/ Japan's first "gate-model commercial quantum computing system"	
IBM Quantum System One "Kawasaki"	11
■ Figure 1-2-4/ Bird's-eye photo of the KBIC	12
■ Figure 1-2-5/ Changes in the number of companies and organizations joining the KBIC as	
well as the number of their employees	12
■ Figure 1-2-6/ Innovative results in the KBIC	13
■ Figure 1-3-1/ Strategic data sharing between COI Hirosaki site's corporate participants and	
the university and their joint analysis	16
■ Figure 1-3-2/ Scene from a two-step test	17
■ Figure 1-3-3/ Scene from an infant health examination	18
■ Figure 1-3-4/ Demonstration test of robot farm machines (robot tractors) (Iwamizawa	
City)	18
■ Figure 1-3-5/ Panoramic view of the Tsuruoka Science Park	20
■ Table 1-3-6/ List of startups related to the IAB, Keio University	20
■ Figure 1-3-7/ Production process of semiconductor integrated circuits	22
■ Figure 1-3-8/ NanoTerasu under construction and the Aobayama New Campus	23
■ Figure 1-3-9/ Structure and various functions, etc. of nanocarbon membrane	26
■ Figure 1-3-10/ Conceptual scheme of the "Innovative Water Production and Circulation	
System"	26
■ Figure 1-4-1/ Braille translation generated from an image file	33
■ Figure 1-4-2/ A system comprising a respiration sensor and surveillance camera	34
■ Figure 1-4-3/ Freezer temperature control system that uses the IntegrAI Camera	34
■ Figure 1-4-4/ Flexible fingers and QuickFactory	35
Part 2	
■ Table 2-1-1/ List of CSTI members (Current as of April 1, 2023)	43
■ Figure 2-1-2/ Moonshot Research and Development Program	46
■ Table 2-1-3/ Major decisions made and reports provided by the Council for Science and	
Technology (CST) (FY2022)	51
■ Figure 2-1-4/ Composition of the SCJ	
■ Table 2-1-5/ Changes in the Science and Technology Budget	54
■ Table 2-1-6/ Science and Technology Budget by Ministry/Agency	
■ Table 2-1-7/ R&D Tax Credit System	
■ Figure 2-2-1/ The Nankai Trough Seafloor Observation Network for Earthquakes and	
Tsunamis (N-net)	92

■ Figure 2-2-2/ Innovative Science & Technology Initiative for Security	108
■ Figure 2-2-3/ Transition in achievements of joint research at universities	113
■ Figure 2-2-4/ Percentage of female researchers by country	162
■ Figure 2-2-5/ Changes in the number of researchers dispatched abroad (short-term and mid-	•
to-long-term)	168
■ Figure 2-2-6/ Changes in the number of foreign researchers from overseas (short-term and	
mid-to-long-term)	169
■ Figure 2-2-7/ Diagram of necessary initiatives for securing research time	179
■ Figure 2-2-8/ Inspection of telephone poles using AIST-developed three-dimensional	
image diagnostic system	188
■ Figure-2-9/ Geological map of Nikko-Shirane and Mitsudake volcanoes	189
■ Figure 2-2-10/ Image of "Innovation Commons (co-creation campus)" at National	
Universities	194
■ Figure 2-2-11/ Case examples of campus and facility development for supporting co-	
creation activities	195
■ Figure 2-2-12/ Participants in the International Student Contests in Science and	
Technology (FY2022)	198
■ Figure 2-2-13/ The 10th Japan Junior High School Science Championships	200
■ Figure 2-2-14/ The 12th Japan High School Science Championships	200
■ Figure 2-2-15/ Breakdown of successful candidates of the Second-Step Professional	
Engineer Examination by Technical Discipline (FY2022)	203
■ Figure 2-2-16/ FY2023 annual S&T poster for everyone "One S&T Poster for Every	
Household- Virus: Small Size, Big Impact"	206

Columns

1	Policy Recommendations by G7 National Academies (G-Science Academies'	
	Meetings)	53
2	Response to the 3D Structure Paradigm Shift in Advanced Logic	
	Semiconductors Development of R&D Bases	30
3	Carbon Recycling	36
4	Formulation of the "MIDORI Breeding Policy" for Realization of	
	the Goals in the Strategy for Sustainable Food Systems, MIDORI	70
5	Efficient R&D through Collaboration with Other Defense Research	
	Institutions10)9
6	Japan Medical Research and Development Grand Prize	32
7	Aiming for More Extensive Utilization of Medical Information—Next-	
	Generation Medical Infrastructure Act	33
8	Development of Technology to Zap Pests with Laser Beams	37
9	Protecting Japan's Social Infrastructure through Deterioration Prediction	
	Using Data Science Technology and Evidence-based Policy Formulation 18	39
10	Active Doctoral Human Resources: Researchers at Private Companies	31
11	Active Doctoral Human Resources: Humanities and Social Sciences	
	Researchers	34
12	Active Doctoral Human Resources: Researchers Active Overseas Doctoral	
	Personnel Active in Various Locations: Doctors Currently Studying Abroad 1	7 1
13	Active Doctoral Human Resources: Natural Science Overseas (Regional	
	Universities)	74
14	Research Support Personnel Who Prop up Research at Universities	77
15	Co-Creation Science and Technology Communication Activities)9